Object Identification and Retrieval from Efficient Image Matching: Snap2Tell with the STOIC Dataset
نویسندگان
چکیده
Traditional content based image retrieval attempts to retrieve images using syntactic features for a query image. Annotated image banks and Google allow the use of text to retrieve images. In this paper, we studied the task of using the content of an image to retrieve information in general. We describe the significance of object identification in an information retrieval paradigm that uses image set as intermediate means in indexing and matching. We also describe a unique Singapore Tourist Object Identification Collection with associated queries and relevance judgments for evaluating the new task and the need for efficient image matching using simple image features. We present comprehensive experimental evaluation on the effects of feature dimensions, context, spatial weightings, coverage of image indexes, and query devices on task performance. Lastly we describe the current system developed to support mobile image-based tourist information retrieval.
منابع مشابه
The Reliability of Metrics Based on Graded Relevance
Improving weak ad-hoc retrieval by Web assistance and data fusion p. 17 Query expansion with the minimum relevance judgments p. 31 Improved concurrency control technique with lock-free querying for multi-dimensional index structure p. 43 A color-based image retrieval method using color distribution and common bitmap p. 56 A probabilistic model for music recommendation considering audio features...
متن کاملContent Based Radiographic Images Indexing and Retrieval Using Pattern Orientation Histogram
Introduction: Content Based Image Retrieval (CBIR) is a method of image searching and retrieval in a database. In medical applications, CBIR is a tool used by physicians to compare the previous and current medical images associated with patients pathological conditions. As the volume of pictorial information stored in medical image databases is in progress, efficient image indexing and retri...
متن کاملImproving Content-Based Image Retrieval with Relevance Feedback
In this paper, we present an effective approach for improving content-based image retrieval (CBIR) with relevance feedback. A rectangular image segmentation technique is used for feature extraction in image retrieval. Then an image object matching algorithm is proposed for image retrieval. Finally, a feature reweighting approach is used for relevance feedback, which transforms object features i...
متن کاملSample-oriented Domain Adaptation for Image Classification
Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...
متن کاملImage Retrieval Using Dynamic Weighting of Compressed High Level Features Framework with LER Matrix
In this article, a fabulous method for database retrieval is proposed. The multi-resolution modified wavelet transform for each of image is computed and the standard deviation and average are utilized as the textural features. Then, the proposed modified bit-based color histogram and edge detectors were utilized to define the high level features. A feedback-based dynamic weighting of shap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005